Water yield following forest–grass–forest transitions
نویسندگان
چکیده
Many currently forested areas in the southern Appalachians were harvested in the early 1900s and cleared for agriculture or pasture, but have since been abandoned and reverted to forest (old-field succession). Land-use and land-cover changes such as these may have altered the timing and quantity of water yield (Q). We examined 80 years of streamflow and vegetation data in an experimental watershed that underwent forest–grass–forest conversion (i.e., oldfield succession treatment). We hypothesized that changes in forest species composition and water use would largely explain long-term changes in Q. Aboveground biomass was comparable among watersheds before the treatment (208.3 Mg ha−1), and again after 45 years of forest regeneration (217.9 Mg ha−1). However, management practices in the treatment watershed altered resulting species composition compared to the reference watershed. Evapotranspiration (ET) andQ in the treatment watershed recovered to pretreatment levels after 9 years of abandonment, then Q became less (averaging 5.4 % less) and ET more (averaging 4.5 % more) than expected after the 10th year up to the present day. We demonstrate that the decline in Q and corresponding increase in ET could be explained by the shift in major forest species from predominantly Quercus and Carya before treatment to predominantly Liriodendron and Acer through old-field succession. The annual change in Q can be attributed to changes in seasonal Q. The greatest management effect on monthly Q occurred during the wettest (i.e., above medianQ) growing-season months, whenQ was significantly lower than expected. In the dormant season, monthly Q was higher than expected during the wettest months.
منابع مشابه
Long-term Potential and Actual Evapotranspiration of Two Different Forests on the Atlantic Coastal Plain
A reliable estimate of potential evapotranspiration (PET) for a forest ecosystem is critical in ecohydrologic modeling related with water supply, vegetation dynamics, and climate change and yet is a challenging task due to its complexity. Based on long-term on-site measured hydro-climatic data and predictions from earlier validated hydrologic modeling studies, this study compared different meth...
متن کاملAnnual Water Yield Estimation for Different Land Uses by GIS-Based InVEST Model (Case Study: Mish-khas Catchment, Ilam Province, Iran)
Fresh water supply and its security encounter a high level of fluctuating variability under global climate changes. To address these concerns in catchment water management, a good understanding of land use/cover impacts on the hydrological cycle affecting water supply is crucial. The objective of this study is to define a model to investigate the impact of existing land use/cover on water yield...
متن کاملEffect of National-Scale Afforestation on Forest Water Supply and Soil Loss in South Korea, 1971–2010
Afforestation of forests in South Korea may provide an example of the benefit of afforestation on precipitation storage and erosion control. In this study, we presented the effects of afforestation on water supply and soil loss prevention. A spatio-temporal simulation of forest water yield and soil loss was performed from 1971–2010 using InVEST water yield and SWAT models. A forest stock change...
متن کاملPatterns and drivers of Holocene vegetational change near the prairie-forest ecotone in Minnesota: revisiting McAndrews' transect.
Holocene vegetational dynamics along the prairie-forest border of Minnesota were first documented in McAndrews' classic work. Despite numerous subsequent paleo-studies, a number of questions remain unanswered about the vegetation history of the region. Here, pollen, stable-isotope, mineral, and charcoal data are described from three lakes near McAndrews' sites. These data were compared with oth...
متن کاملModelling the potential role of forest thinning in maintaining water supplies under a changing climate across the conterminous United States
The goal of this study was to test the sensitivity of water yield to forest thinning and other forest management/disturbances and climate across the conterminous United States (CONUS). Leaf area index (LAI) was selected as a key parameter linking changes in forest ecosystem structure and functions. We used the Water Supply Stress Index model to examine water yield response under 18 scenarios th...
متن کامل